Existence results to a nonlinear p(k)-Laplacian difference equation
نویسندگان
چکیده
منابع مشابه
Existence Results for Nonlinear Fractional Difference Equation
This paper is concerned with the initial value problem to a nonlinear fractional difference equation with the Caputo like difference operator. By means of some fixed point theorems, global and local existence results of solutions are obtained. An example is also provided to illustrate our main result.
متن کاملBEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION
In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.
متن کاملExistence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition
We study the nonlinear elliptic boundary value problem Au = f(x, u) in Ω , Bu = g(x, u) on ∂Ω , where A is an operator of p−Laplacian type, Ω is an unbounded domain in R with non-compact boundary, and f and g are subcritical nonlinearities. We show existence of a nontrivial nonnegative weak solution when both f and g are superlinear. Also we show existence of at least two nonnegative solutions ...
متن کاملExistence of Homoclinic Orbit for Second-order Nonlinear Difference Equation
By using the Mountain Pass Theorem, we establish some existence criteria to guarantee the second-order nonlinear difference equation ∆ [p(t)∆u(t − 1)] + f(t, u(t)) = 0 has at least one homoclinic orbit, where t ∈ Z, u ∈ R.
متن کاملExistence of a positive solution for a p-Laplacian equation with singular nonlinearities
In this paper, we study a class of boundary value problem involving the p-Laplacian oprator and singular nonlinearities. We analyze the existence a critical parameter $lambda^{ast}$ such that the problem has least one solution for $lambdain(0,lambda^{ast})$ and no solution for $lambda>lambda^{ast}.$ We find lower bounds of critical parameter $lambda^{ast}$. We use the method ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Difference Equations and Applications
سال: 2017
ISSN: 1023-6198,1563-5120
DOI: 10.1080/10236198.2017.1354991